Ergodic decompositions of stationary max-stable processes in terms of their spectral functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Processes ( Fall 2014 ) Spectral representations and ergodic theorems for stationary stochastic processes Stationary stochastic processes

A stochastic process X is strongly stationary if its fdds are invariant under time shifts, that is, for any (finite) n, for any t0 and for all t1, ..., tn ∈ T , (Xt1 , ..., Xtn) and (Xt1+t0 , ..., Xtn+t0) have the same distribution. A stochastic process X is weakly stationary if its mean function is constant and its covariance function is invariant under time shifts. That is, for all t ∈ T , E(...

متن کامل

Stationary Max - Stable Fields Associated to Negative Definite Functions

Let Wi, i ∈ N, be independent copies of a zero-mean Gaussian process {W (t), t∈ R} with stationary increments and variance σ(t). Independently of Wi, let ∑∞ i=1 δUi be a Poisson point process on the real line with intensity e dy. We show that the law of the random family of functions {Vi(·), i ∈N}, where Vi(t) = Ui +Wi(t)− σ (t)/2, is translation invariant. In particular, the process η(t) = ∨∞ ...

متن کامل

Spectral representation of some non stationary α-stable processes

In this paper, we give a new covariation spectral representation of some non stationary symmetric α-stable processes (SαS). This representation is based on a weaker covariation pseudo additivity condition which is more general than the condition of independence. This work can be seen as a generalization of the covariation spectral representation of processes expressed as stochastic integrals wi...

متن کامل

Ergodic Properties of Max–Infinitely Divisible Processes

We prove that a stationary max–infinitely divisible process is mixing (ergodic) iff its dependence function converges to 0 (is Cesaro summable to 0). These criteria are applied to some classes of max–infinitely divisible processes.

متن کامل

Ergodic Properties of Sum– and Max– Stable Stationary Random Fields via Null and Positive Group Actions

We establish characterization results for the ergodicity of symmetric α–stable (SαS) and α–Fréchet max–stable stationary random fields. We first show that the result of Samorodnitsky [35] remains valid in the multiparameter setting, i.e., a stationary SαS (0 < α < 2) random field is ergodic (or equivalently, weakly mixing) if and only if it is generated by a null group action. The similarity of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2017

ISSN: 0304-4149

DOI: 10.1016/j.spa.2016.10.001